
Surfing, Snooping, and
Spreadsheets: Three Levels

of Security Attacks
Owen Barnett, Oliver Calder, Skyler Kessenich, Peter McCrea,

Nick Pandelakis, John Witte

Charger Surfing
Stealing Phone Passwords

From Charging Cables

What are we Replicating?

- A 2020 Usenix paper titled: “Charger Surfing: Exploiting a Power Line Side-Channel

for Smartphone Information Leakage.”

- They propose a general attack on charging cables that:

- Recognizes a target phone’s model.

- Obtains that phone’s passcode in real time.

What is a Side-Channel Attack?

- Side-channel attacks exploit the implementation of a computer system.

- These attacks often leverage variabilities in the transfer of data to gain information.

- Examples include:

- Timing attacks: Guessing passwords using fluctuations in timing.

- Power-analysis attacks: Using fluctuations in power to gain information

(Charger Surfing!).

What are we Doing?

- Restricting our analysis to just iPhones.

- Our target: Someone using a phone plugged into a compromised system.

- Our Goals:

- Identify when a button is being pressed on the lock-screen.

- Identify which button is being pressed on the lock-screen.

Attack Scenario

This could be you!

Pass Through Charging

Screen Refresh

Button Press Animation

Our Design
- Use an analog-to-digital

converter (ADC) to read

voltage drops across a small

resistor.

- Collect data on an external

device using an ESP32

microcontroller.

https://app.diagrams.net/?page-id=watPNah0mg9lGrSm9BaQ&scale=auto#G1rue05GT-JLHZG3i3mD1MgBmVQnzma9Mv

Our Data Paper’s Data

Comparing 1 and 9 on iPhone 6s

Comparing 1 and 9 on iPhone 6s

Graphs of Raw Data

Recognizing Buttons

- We used a convolutional neural network (CNN) to classify voltage data.

- CNNs are well equipped to analyze time-series data.

- CNNs are fairly noise resistant.

Results

- We collected 22 samples of each lock-screen button.

- Using 5-fold cross-validation, we were able to correctly classify buttons with an

average of 45% accuracy!

- This is much better than just guessing.

Analysis of Results

- Our results are not robust:

- This is limited to samples collected on just one day.

- Our neural net struggled to classify data across days.

- This limits the real-world effectiveness of this attack.

How Worried Should you be?

- It is clear that phone charging cables effectively are two-way connections. Power is

sent to your phone and information about your phone’s processes is sent back.

- Making sense of that data, however, requires precision and sophistication.

- The attack is only useful if:

- Your phone pin is not a unique pin you use in your life OR

- An attacker will at some point be able to acquire your phone.

How Worried Should you be?

References

- Cronin, Patrick, et al. “Charger-Surfing: Exploiting a Power Line
Side-Channel for Smartphone Information Leakage.” USENIX,
https://www.usenix.org/conference/usenixsecurity21/presentation
/cronin.

DHT Crawling
Oliver Calder and Peter McCrea

[Oliver]
Anonymous slide "THIS WEBSITE HAS BEEN SEIZED"...yeah, maybe
Outline
- Peter jumped in to describe the last three bullets. Weird. Switch at a slide boundary.
Traditional Download Model
- Nice diagram
- Problems: slow, hard on the server, maybe say "single point of failure"
Solution: BitTorrent
- Nice
BitTorrent Basics
- Clients/peers
- Central servers: peer-finding, search engine
Anatomy of a torrent
- Metadata (size, title, file names, seeds, etc.)
- Infohash (SHA-1 of metadata, unique ID)
- This slide was perhaps a little slow.
 - Better: metadata=title etc., infohash=unique id derived from the metadata, done
 - Don't bog down in defining hashes. You can say "for those of you familiar w/ cryptographic hashes, this id is computed as a SHA-1 of the metadata"
Side Effects
- internal data sharing (e.g. Amazon)
- great for illegal file sharing
- central servers still vulnerable
[Peter]
Central Server: Point of Failure
- No initialization w/o server
Solution: Distributed Hash Table
- I missed a little bit of this. Is it clear whether the whole table is busted into pieces? What's in a particular hash table (key, value) pair?
Distr
This section needs more clarity
[Oliver]
DHT Protocol
- ping: "are you there?" "yes I'm here"
- find_node
 - "8 closest nodes" (closest to what?)
- get_peers
- announce_peer
 - who do you announce to?
 - how often?
 - is this a request? or a network maintenance action? or...?
[Peter]
- This slide needs time-dependence. X happens, then Y happens, then Z. Help me understand what's going on in this diagram.
DHT Key Concepts
- I'm finding this explanation less clear
The plan
- OK
Now we wait
etc.
"Who is downloading it" -- what info do you get that you're calling "who"?
Being bad with the data
- Your only example is law enforcement hand-over
- What about assembling profiles of individual IP addresses and the things they're downloading? (e.g. this is a movie stealer, this is a legal software person, this is somebody who specializes in porn, etc.)
OVERALL
- This is quite clear
- Slides are hitting the clarity & simplicity goals
- Too long! Hit the key ideas, discard unnecessary stuff, don't repeat
- Tighter early part, longer "what we did"

Outline
● Traditional download model
● Introduction to Torrenting
● What is the DHT protocol
● Benefits and side-effects
● Our plan
● Results and Analysis

Traditional Downloads

Traditional Download Model

ServerC

Traditional Download Model

ServerC

Traditional Download Model

ServerC

Send the file!

Traditional Download Model

ServerC

File:

h
i
!

Traditional Download Model

ServerC
h

File:

h
i
!

Traditional Download Model

ServerC
h

File:

h
i
!

Traditional Download Model

ServerC
h

File:

h
i
!

Traditional Download Model

ServerC

File:

h
i
!

File:

h

Traditional Download Model

ServerC
i

File:

h
i
!

File:

h

Traditional Download Model

ServerC
i

File:

h
i
!

File:

h

Traditional Download Model

ServerC
i

File:

h
i
!

File:

h

Traditional Download Model

ServerC

File:

h
i
!

File:

h
i

Traditional Download Model

ServerC
!

File:

h
i
!

File:

h
i

Traditional Download Model

ServerC
!

File:

h
i
!

File:

h
i

Traditional Download Model

ServerC
!

File:

h
i
!

File:

h
i

Traditional Download Model

ServerC

File:

h
i
!

File:

h
i
!

So far so good…

But what if we have 1000 clients?

Traditional Download Model

ServerC

C

C

C

C

C
C

C

C

C

C CC

C

C

C

C

C

C

C

C

C

Traditional Download Model… becomes rather terrifying

Server
:(

C

C

C

C

C

C
C

C

C

C

C CC

C

C

C

C

C

C

C

C

C

Immediate
problems

Traditional download model
begins to collapse

● Slow!

Immediate
problems

Traditional download model
begins to collapse

● Slow!
● Hard on the server

Immediate
problems

Traditional download model
begins to collapse

● Slow!
● Hard on the server
● Single point of failure

Solution: BitTorrent

BitTorrent

ServerC

C

C

File:

h
i
!

X

BitTorrent

ServerC

C

C

File:

h
i
!

X

Who has the file?

Who has the file?

Who has the file
?

BitTorrent

ServerC

C

C

X

X

X

File:

h
i
!

X

BitTorrent

ServerC

C

C

File:

h
i
!

X

BitTorrent

ServerC

C

C

File:

h
i
!

X

Send the file!

Se
nd

 th
e

file
!

Send the file!

BitTorrent

ServerC

C

C

File:

h
i
!

X
h

i

!

BitTorrent

ServerC

C

C

File:

h

File:

!

File:

i

File:

h
i
!

X

BitTorrent

ServerC

C

C

File:

h

File:

!

File:

i

File:

h
i
!

X

BitTorrent

ServerC

C

C

h

h

i

i

!

!

File:

h

File:

!

File:

i

File:

h
i
!

X

BitTorrent

ServerC

C

C

File:

h
i
!

File:

h
i
!

File:

h
i
!

File:

h
i
!

X

BitTorrent
Basics

● Clients (peers):
○ Download pieces of

files from each other
● Central server(s):

○ Facilitate finding
peers for given file

○ Store metadata
○ Torrent “search

engines”

BitTorrent
Benefits

● Much faster downloads
● Less strain on individual

server
● Resilient to failure of

peers

BitTorrent
Side Effects

● Great for internal data
sharing (Amazon, etc.)

BitTorrent
Side Effects

● Great for internal data
sharing (Amazon, etc.)

● … also great for sharing
illegal/copyrighted media

BitTorrent
Side Effects

● Great for internal data
sharing (Amazon, etc.)

● … also great for sharing
illegal/copyrighted media

● Torrent websites/servers
are easy targets

Central Server: Point of Failure

Central Server: Point of Failure

Server

C

C

C

??
??

??

??

??

Solution: Distributed Hash Table (DHT)

Distributed
Hash Table

● Each node/server has ID
● Many servers share

information about peers
○ Mappings from

infohash to IP:port
○ Mappings from peer

IDs to IP:port
● All you need is an

infohash to download

Server

N

N

N

node1 = {
 "Avengers Endgame": "121.235.14.180:6881",
 "Hannah Montana.mp3": "33.117.74.62:6881",
 "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
 "Windows 7 cracked (free)": "56.70.234.227: 6881",
 "music.mp3": "146.231.124.90: 6881",
 "Arch Linux.iso": "117.31.176.98: 6881"
}

node2 = {
 "textbook.pdf": "121.235.14.180:6881",
 "XXX.mp4": "8.44.194.128:6881",
 "hiJeff.txt": "54.94.141.91:6881"
}

N

N

N

node1 = {
 "Avengers Endgame": "121.235.14.180:6881",
 "Hannah Montana.mp3": "33.117.74.62:6881",
 "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
 "Windows 7 cracked (free)": "56.70.234.227: 6881",
 "music.mp3": "146.231.124.90: 6881",
 "Arch Linux.iso": "117.31.176.98: 6881"
}

node2 = {
 "textbook.pdf": "121.235.14.180:6881",
 "XXX.mp4": "8.44.194.128:6881",
 "hiJeff.txt": "54.94.141.91:6881"
}

N

“I want to download Arch Linux. My IP
address is 152.197.106.171, please tell
me who is uploading this file or find other
nodes that know who is uploading this file”

DHT Protocol
4 query types

DHT Protocol
4 query types

ping

● ping:
○ Send your ID
○ Get your ID back

DHT Protocol
4 query types

ping
find_node

● find_node:
○ Send:

■ Your ID
■ Target node ID

○ Receive:
■ IP:port of target, if

known
■ Otherwise, IP:port

of 8 closest nodes

Aside:
“closeness”

Optimizing search across the
network

● Infohashes and client IDs are
both 160 bits

● Distance between an infohash
and an ID is equal to the
integer value of their XOR

● Store infohashes on nodes with
IDs “closest” to the infohash

○ Search time is greatly reduced

DHT Protocol
4 query types

ping
find_node
get_peers

● get_peers:
○ Send:

■ Your ID
■ Infohash of file

○ Receive:
■ Token
■ IP:port of known

peers
■ OR IP:port of 16

“closest” nodes

DHT Protocol
4 query types

ping
find_node
get_peers

announce_peer

● announce_peer:
○ Send:

■ Your ID
■ Your port
■ Infohash
■ Token

○ Receive
■ Queried node ID

DHT Key
Concepts

A brief summary

● No central server
● Peers are nodes
● “Closeness”

○ Put data on nodes
with closest IDs

● How downloading works:
○ get_peers
○ announce_peer

N

N

N

node1 = {
 "Avengers Endgame": "121.235.14.180:6881",
 "Hannah Montana.mp3": "33.117.74.62:6881",
 "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
 "Windows 7 cracked (free)": "56.70.234.227: 6881",
 "music.mp3": "146.231.124.90: 6881",
 "Arch Linux.iso": "117.31.176.98: 6881"
}

node2 = {
 "textbook.pdf": "121.235.14.180:6881",
 "XXX.mp4": "8.44.194.128:6881",
 "hiJeff.txt": "54.94.141.91:6881"
}

N

“I want to download Arch Linux. My IP
address is 152.197.106.171, please tell
me who is uploading this file or find other
nodes that know who is uploading this file”

N

N

N

node1 = {
 "Avengers Endgame": "121.235.14.180:6881",
 "Hannah Montana.mp3": "33.117.74.62:6881",
 "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
 "Windows 7 cracked (free)": "56.70.234.227: 6881",
 "music.mp3": "146.231.124.90: 6881",
 "Arch Linux.iso": "117.31.176.98: 6881"
}

node2 = {
 "textbook.pdf": "121.235.14.180:6881",
 "XXX.mp4": "8.44.194.128:6881",
 "hiJeff.txt": "54.94.141.91:6881"
}

N

get_peers(infohash)
announce_peer(infohash)

DHT
Side Effects

● Peers hold lots of
necessary information:
○ Infohashes → IP:port
○ Node IDs → IP:port

DHT
Side Effects

● Peers hold lots of
sensitive information:
○ Infohashes → IP:port
○ Node IDs → IP:port

DHT
Side Effects

● In order to torrent, you
need to broadcast your IP
address and what files
you have/want

● All of this is sent to DHT
nodes publicly and
unencrypted….

The plan

The plan
Phase 1:

● Host lots of DHT clients on a
machine we control

● Nodes in the DHT network
contact us looking for torrent
information

● Record each request using
network analysis tools
○ Who asked (IP)?
○ What are they looking for

(infohash)?

Now we wait…

Real requests and IP addresses sent to our DHT clients:

Save the infohashes we are
asked for…

The plan
Phase 1:

● Host lots of DHT clients on a
machine we control

● Nodes in the DHT network
contact us looking for torrent
information

● Record each request using
network analysis tools
○ Who asked (IP)?
○ What are they looking for

(infohash)?

The plan
Phase 1:

● Host lots of DHT clients on a
machine we control

● Nodes in the DHT network
contact us looking for torrent
information

● Record each request using
network analysis tools
○ Who asked (IP)?
○ What are they looking for

(infohash)?

Phase 2:

● For each infohash we’ve
recorded:

● Search for peers by recursively
making get_peers() requests
using a burner client_ID

59,553 unique detected infohashes and 42,047 IPs later…

Phase 3
What to do with the data…

Phase 3
Being “good”

Phase 3
Being “good”

● Look up metadata for each
infohash

● Provide information to other
peers on the network

Being “good”
with this data:

● Take our infohashes, and
download the metadata

● We turn the infohashes and
metadata into a torrent
search engine!

● Even if many torrent search
engines get taken down,
any client in the DHT can
quickly create a new one

Phase 3
Being “bad”

Phase 3
Being “bad”

● Look up who these IP
addresses are

● Get location information
● Who owns these IP addresses

(institutions, VPN companies,
local ISPs, etc)

Being “bad”
with this data:

● Our infohashes and IP addresses
are a massive database of tens of
thousands of people who have
downloaded potentially illegal
material…

● Request ISPs to hand over data
associating IP addresses to people

● This data can be used by law
enforcement / copyright holders

Data:

● 59,553 infohashes saved
● 42,047 IPs collected

Data:

● 59,553 infohashes saved
● 42,047 IPs collected

Data:

● 59,553 infohashes saved
● 42,047 IPs collected
● Popular torrents are very popular

○ Most popular torrent had 458 unique
IPs collected

● Unpopular torrents are very not popular
○ 35,209 torrents with 0 unique IPs

collected
○ 14,870 torrents with 1 unique IP

collected

References

Wolchok, Scott, and J. Alex Halderman. "Crawling BitTorrent DHTs for Fun and
Profit." In 4th USENIX Workshop on Offensive Technologies (WOOT 10). 2010.

Wang, Liang, and Jussi Kangasharju. "Measuring large-scale distributed systems:
case of bittorrent mainline dht." In IEEE P2P 2013 Proceedings, pp. 1-10. IEEE,
2013.

BitTorrent protocol and extensions:

● https://www.bittorrent.org/beps/bep_0003.html (BitTorrent Protocol)
● https://www.bittorrent.org/beps/bep_0005.html (DHT Extension)
● https://www.bittorrent.org/beps/bep_0009.html (Metadata Extension)

https://www.bittorrent.org/beps/bep_0003.html
https://www.bittorrent.org/beps/bep_0005.html
https://www.bittorrent.org/beps/bep_0009.html

Spreadsheet
Security: Exploiting
Microsoft Macro
Functionality

By John Witte and Skyler Kessenich

Overview

★ Attacking a computer using and excel

spreadsheet
○ Phishing attack

○ Uses macro functionality

★ COVID popularized attack
○ Numerous companies using excel

have been breached

○ Sparked Microsoft to shut down

macros

Motivation

★ Volume of companies reliant on

excel for data management

★ COVID led to increase in attack

usage
○ Originally spiked in 2015 from

Team Rocket Kitten

★ Increase in phishing attacks at

financial companies

★ Relevant to our internships

Background: History

★ First attack in 1995

★ Melissa Attack 1999

★ 2000-2014 Dormant years

★ 2014 ZeuS, DRIDEX, ROVNIX info stealing macro attacks

★ 2015 Banks and Team Rocket Kitten

★ 2020 COVID Uptick

Background: What is a Macro

★ Functionality allowing users to automate repetitive tasks
○ Helps with data entry at a large scale

★ Code written in VBA

★ Examples:
○ Check cells for certain features

○ Sort sheets

○ Create alerts

○ Link sheets

○ Open, write and read other documents

Background: Reverse Payload Attack

★ Reverse Shell Attack

○ Reverse TCP

★ Metasploit

How it Works - Step 1: Writing the Payload

★ Uses Metasploit’s

MSFVenom on Kali

Linux

★ Puts attacking IP and

Port in file

★ When file is run,

reverse shell initiates

How it Works - Step 2: Embedding In an Excel
Macro

★ Excel’s VBA Language

★ Excel needs to run the

payload

★ Uses auto_open command

to automatically run the

macro

How it Works - Step 3: Set Up Listening Machine

★ Uses Metasploit’s

MSFConsole

★ Tells attacking machine:

○ IP address

○ Listening Port

○ Payload

★ If connection is made,

the machine has root

access

How it Works - Step 4: Phishing the Target

★ Target must acquire

Excel sheet

★ Methods:

○ Email

○ Web

Download

★ Once opened, the

attack launches

Our Process - The Payload

★ Payload
○ MSFVenom’s Reverse

TCP Python payload

○ Python file

★ Embedding the Macro
○ Not first approach

○ Write to file

○ Execute

★ Running the payload

Demo

https://docs.google.com/file/d/1VSKkHY0A1DDr65CiWVAFCfZsA1BUrFfv/preview

Roadblocks:

★ Running the File Directly from Sheet
○ Debugging in VBA

★ Where to write file to machine

★ Obfuscating malicious code

○ Encoding

○ Replacing

○ Spitting

Defenses

★ Turning off Macros
○ Microsoft shutting down macros for windows 10 and later

★ Anti Virus software
○ Different techniques

○ Obfuscation makes this hard

Conclusion

★ Able to start remote shell on target computer
○ Works on any computer with python and excel

★ What we took away from this:
○ Replicating attacks is hard

○ Do not open emails with attached documents unless you are 100% sure it is from known contact

★ Applications
○ Presented to our jobs

Works Cited

★ “20 Years of Macro Malware: From Harmless Concept to Targeted Attacks.” Security News,
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/20-years-of-macro-malware-from-harmle
ss-concept-to-targeted-attacks.

★ Bansal, -- By Sumit, et al. “24 Useful Excel Macro Examples for VBA Beginners (Ready-to-Use).” Trump Excel, 20 Dec.
2021, https://trumpexcel.com/excel-macro-examples/.

★ Brook, Chris. “What Is Macro Malware?” Digital Guardian, 5 Dec. 2018,
https://digitalguardian.com/blog/what-macro-malware.

★ Grinberg, Shiran. “Office Macro Attacks.” Cynet, https://www.cynet.com/attack-techniques-hands-on/office-macro-attacks/.
★ Lam, Vinh. “Excel 4.0 Macro: Old Feature, New Attack Technique.” OPSWAT, 26 July 2021,

https://www.opswat.com/blog/excel-4-0-macro-old-feature-new-attack-technique#:~:text=The%20First%20Excel%204.0%2
0Macro%20Attack&text=It%20involves%20an%20infected%20sheet,target%20into%20opening%20the%20file.

★ “MSFVenom Cheat Sheet.” HackTricks, https://book.hacktricks.xyz/shells/shells/msfvenom.
★ Newman, Lily Hay. “Microsoft's Small Step to Disable Macros Is a Huge Win for Security.” Wired, Conde Nast, 11 Feb.

2022, https://www.wired.com/story/microsoft-disables-macros-default-security-phishing/.
★ “Rocket Kitten Showing Its Claws: Operation Woolen-Goldfish and the Ghole Campaign.” Security News,

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/operation-woolen-goldfish-when-kittens-go-phishing.

Acknowledgments

● Thomas Baraniak

● Aaron Heidgerken-Greene

● Mike Tie

● Jeff Ondich

