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Charger Surfing
Stealing Phone Passwords

From Charging Cables



What are we Replicating?

- A 2020 Usenix paper titled: “Charger Surfing: Exploiting a Power Line Side-Channel 

for Smartphone Information Leakage.”

- They propose a general attack on charging cables that:

- Recognizes a target phone’s model.

- Obtains that phone’s passcode in real time.



What is a Side-Channel Attack?

- Side-channel attacks exploit the implementation of a computer system.

- These attacks often leverage variabilities in the transfer of data to gain information.

- Examples include:

- Timing attacks: Guessing passwords using fluctuations in timing.

- Power-analysis attacks: Using fluctuations in power to gain information 

(Charger Surfing!).



What are we Doing?

- Restricting our analysis to just iPhones.

- Our target: Someone using a phone plugged into a compromised system.

- Our Goals:

- Identify when a button is being pressed on the lock-screen.

- Identify which button is being pressed on the lock-screen.



Attack Scenario



This could be you!



Pass Through Charging



Screen Refresh



Button Press Animation 



Our Design
- Use an analog-to-digital 

converter (ADC) to read 

voltage drops across a small 

resistor.

- Collect data on an external 

device using an ESP32 

microcontroller.

https://app.diagrams.net/?page-id=watPNah0mg9lGrSm9BaQ&scale=auto#G1rue05GT-JLHZG3i3mD1MgBmVQnzma9Mv








Our Data Paper’s Data



Comparing 1 and 9 on iPhone 6s



Comparing 1 and 9 on iPhone 6s



Graphs of Raw Data



Recognizing Buttons

- We used a convolutional neural network (CNN) to classify voltage data.

- CNNs are well equipped to analyze time-series data.

- CNNs are fairly noise resistant.



Results

- We collected 22 samples of each lock-screen button.

- Using 5-fold cross-validation, we were able to correctly classify buttons with an 

average of 45% accuracy!

- This is much better than just guessing.



Analysis of Results

- Our results are not robust:

- This is limited to samples collected on just one day.

- Our neural net struggled to classify data across days.

- This limits the real-world effectiveness of this attack.



How Worried Should you be?

- It is clear that phone charging cables effectively are two-way connections. Power is 

sent to your phone and information about your phone’s processes is sent back.

- Making sense of that data, however, requires precision and sophistication.

- The attack is only useful if:

- Your phone pin is not a unique pin you use in your life OR

- An attacker will at some point be able to acquire your phone.



How Worried Should you be?
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DHT Crawling
Oliver Calder and Peter McCrea



[Oliver]
Anonymous slide "THIS WEBSITE HAS BEEN SEIZED"...yeah, maybe
Outline
- Peter jumped in to describe the last three bullets. Weird. Switch at a slide boundary.
Traditional Download Model
- Nice diagram
- Problems: slow, hard on the server, maybe say "single point of failure"
Solution: BitTorrent
- Nice
BitTorrent Basics
- Clients/peers
- Central servers: peer-finding, search engine
Anatomy of a torrent
- Metadata (size, title, file names, seeds, etc.)
- Infohash (SHA-1 of metadata, unique ID)
- This slide was perhaps a little slow.
    - Better: metadata=title etc., infohash=unique id derived from the metadata, done
    - Don't bog down in defining hashes. You can say "for those of you familiar w/ cryptographic hashes, this id is computed as a SHA-1 of the metadata"
Side Effects
- internal data sharing (e.g. Amazon)
- great for illegal file sharing
- central servers still vulnerable
[Peter]
Central Server: Point of Failure
- No initialization w/o server
Solution: Distributed Hash Table
- I missed a little bit of this. Is it clear whether the whole table is busted into pieces? What's in a particular hash table (key, value) pair?
Distr
This section needs more clarity
[Oliver]
DHT Protocol
- ping: "are you there?" "yes I'm here"
- find_node
    - "8 closest nodes" (closest to what?)
- get_peers
- announce_peer
    - who do you announce to?
    - how often?
    - is this a request? or a network maintenance action? or...?
[Peter]
- This slide needs time-dependence. X happens, then Y happens, then Z. Help me understand what's going on in this diagram.
DHT Key Concepts
- I'm finding this explanation less clear
The plan
- OK
Now we wait
etc.
"Who is downloading it" -- what info do you get that you're calling "who"?
Being bad with the data
- Your only example is law enforcement hand-over
- What about assembling profiles of individual IP addresses and the things they're downloading? (e.g. this is a movie stealer, this is a legal software person, this is somebody who specializes in porn, etc.)
OVERALL
- This is quite clear
- Slides are hitting the clarity & simplicity goals
- Too long! Hit the key ideas, discard unnecessary stuff, don't repeat
- Tighter early part, longer "what we did"



Outline
● Traditional download model
● Introduction to Torrenting
● What is the DHT protocol
● Benefits and side-effects
● Our plan
● Results and Analysis



Traditional Downloads
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So far so good… 

But what if we have 1000 clients?
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Traditional Download Model… becomes rather terrifying
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Immediate 
problems

Traditional download model 
begins to collapse

● Slow!
● Hard on the server
● Single point of failure



Solution: BitTorrent
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BitTorrent 
Basics

● Clients (peers):
○ Download pieces of 

files from each other
● Central server(s):

○ Facilitate finding 
peers for given file

○ Store metadata
○ Torrent “search 

engines”



BitTorrent 
Benefits

● Much faster downloads
● Less strain on individual 

server
● Resilient to failure of 

peers



BitTorrent
Side Effects

● Great for internal data 
sharing (Amazon, etc.)
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BitTorrent
Side Effects

● Great for internal data 
sharing (Amazon, etc.)

● … also great for sharing 
illegal/copyrighted media

● Torrent websites/servers 
are easy targets



Central Server: Point of Failure



Central Server: Point of Failure
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Solution: Distributed Hash Table (DHT)



Distributed 
Hash Table

● Each node/server has ID
● Many servers share 

information about peers
○ Mappings from 

infohash to IP:port
○ Mappings from peer 

IDs to IP:port
● All you need is an 

infohash to download



Server

N

N

N

node1 = {
  "Avengers Endgame": "121.235.14.180:6881",
  "Hannah Montana.mp3": "33.117.74.62:6881",
  "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
  "Windows 7 cracked (free)": "56.70.234.227: 6881",
  "music.mp3": "146.231.124.90: 6881",
  "Arch Linux.iso": "117.31.176.98: 6881"
}

node2 = {
  "textbook.pdf": "121.235.14.180:6881",
  "XXX.mp4": "8.44.194.128:6881",
  "hiJeff.txt": "54.94.141.91:6881"
}
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node1 = {
  "Avengers Endgame": "121.235.14.180:6881",
  "Hannah Montana.mp3": "33.117.74.62:6881",
  "Adobe Photoshop": "97.253.196.104:6881"
}

node3 = {
  "Windows 7 cracked (free)": "56.70.234.227: 6881",
  "music.mp3": "146.231.124.90: 6881",
  "Arch Linux.iso": "117.31.176.98: 6881"
}
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  "textbook.pdf": "121.235.14.180:6881",
  "XXX.mp4": "8.44.194.128:6881",
  "hiJeff.txt": "54.94.141.91:6881"
}

N

“I want to download Arch Linux. My IP 
address is 152.197.106.171, please tell 
me who is uploading this file or find other 
nodes that know who is uploading this file”
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DHT Protocol
4 query types

ping

● ping:
○ Send your ID
○ Get your ID back



DHT Protocol
4 query types

ping
find_node

● find_node:
○ Send:

■ Your ID
■ Target node ID

○ Receive:
■ IP:port of target, if 

known
■ Otherwise, IP:port 

of 8 closest nodes



Aside: 
“closeness”

Optimizing search across the 
network

● Infohashes and client IDs are 
both 160 bits

● Distance between an infohash 
and an ID is equal to the 
integer value of their XOR

● Store infohashes on nodes with 
IDs “closest” to the infohash

○ Search time is greatly reduced



DHT Protocol
4 query types

ping
find_node
get_peers

● get_peers:
○ Send:

■ Your ID
■ Infohash of file

○ Receive:
■ Token
■ IP:port of known 

peers
■ OR IP:port of 16 

“closest” nodes



DHT Protocol
4 query types

ping
find_node
get_peers

announce_peer

● announce_peer:
○ Send:

■ Your ID
■ Your port
■ Infohash
■ Token

○ Receive
■ Queried node ID



DHT Key 
Concepts

A brief summary

● No central server
● Peers are nodes
● “Closeness”

○ Put data on nodes 
with closest IDs

● How downloading works:
○ get_peers
○ announce_peer
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get_peers(infohash)
announce_peer(infohash)



DHT
Side Effects

● Peers hold lots of 
necessary information:
○ Infohashes → IP:port
○ Node IDs → IP:port



DHT
Side Effects

● Peers hold lots of 
sensitive information:
○ Infohashes → IP:port
○ Node IDs → IP:port



DHT
Side Effects

● In order to torrent, you 
need to broadcast your IP 
address and what files 
you have/want

● All of this is sent to DHT 
nodes publicly and 
unencrypted….



The plan



The plan
Phase 1:

● Host lots of DHT clients on a 
machine we control

● Nodes in the DHT network 
contact us looking for torrent 
information

● Record each request using 
network analysis tools
○ Who asked (IP)?
○ What are they looking for 

(infohash)?



Now we wait…



Real requests and IP addresses sent to our DHT clients:



Save the infohashes we are 
asked for…
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The plan
Phase 1:

● Host lots of DHT clients on a 
machine we control

● Nodes in the DHT network 
contact us looking for torrent 
information

● Record each request using 
network analysis tools
○ Who asked (IP)?
○ What are they looking for 

(infohash)?

Phase 2:

● For each infohash we’ve 
recorded:

● Search for peers by recursively 
making get_peers() requests 
using a burner client_ID



59,553 unique detected infohashes and 42,047 IPs  later…



Phase 3
What to do with the data…
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Phase 3
Being “good”

● Look up metadata for each 
infohash

● Provide information to other 
peers on the network



Being “good” 
with this data:

● Take our infohashes, and 
download the metadata

● We turn the infohashes and 
metadata into a torrent 
search engine!

● Even if many torrent search 
engines get taken down, 
any client in the DHT can 
quickly create a new one



Phase 3
Being “bad”



Phase 3
Being “bad”

● Look up who these IP 
addresses are

● Get location information
● Who owns these IP addresses 

(institutions, VPN companies, 
local ISPs, etc)



Being “bad” 
with this data:

● Our infohashes and IP addresses 
are a massive database of tens of 
thousands of people who have 
downloaded potentially illegal 
material…

● Request ISPs to hand over data 
associating IP addresses to people

● This data can be used by law 
enforcement / copyright holders



Data:

● 59,553 infohashes saved
● 42,047 IPs collected
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Data:

● 59,553 infohashes saved
● 42,047 IPs collected
● Popular torrents are very popular

○ Most popular torrent had 458 unique 
IPs collected

● Unpopular torrents are very not popular
○ 35,209 torrents with 0 unique IPs 

collected
○ 14,870 torrents with 1 unique IP 

collected
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BitTorrent protocol and extensions:

● https://www.bittorrent.org/beps/bep_0003.html (BitTorrent Protocol)
● https://www.bittorrent.org/beps/bep_0005.html (DHT Extension)
● https://www.bittorrent.org/beps/bep_0009.html (Metadata Extension)
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Spreadsheet 
Security: Exploiting 
Microsoft Macro 
Functionality

By John Witte and Skyler Kessenich



Overview

★ Attacking a computer using and excel 

spreadsheet
○ Phishing attack

○ Uses macro functionality 

★ COVID popularized attack
○ Numerous companies using excel 

have been breached

○ Sparked Microsoft to shut down 

macros



Motivation

★ Volume of companies reliant on 

excel for data management

★ COVID led to increase in attack 

usage
○ Originally spiked in 2015 from 

Team Rocket Kitten

★ Increase in phishing attacks at 

financial companies

★ Relevant to our internships



Background: History 

★ First attack in 1995

★ Melissa Attack 1999

★ 2000-2014 Dormant years

★ 2014 ZeuS, DRIDEX, ROVNIX info stealing macro attacks

★ 2015 Banks and Team Rocket Kitten

★ 2020 COVID Uptick



Background: What is a Macro

★ Functionality allowing users to automate repetitive tasks
○ Helps with data entry at a large scale

★ Code written in VBA 

★ Examples:
○ Check cells for certain features

○ Sort sheets

○ Create alerts

○ Link sheets

○ Open, write and read other documents



Background: Reverse Payload Attack

★ Reverse Shell Attack

○ Reverse TCP

★ Metasploit



How it Works - Step 1: Writing the Payload

★ Uses Metasploit’s 

MSFVenom on Kali 

Linux

★ Puts attacking IP and 

Port in file

★ When file is run, 

reverse shell initiates



How it Works - Step 2: Embedding In an Excel 
Macro

★ Excel’s VBA Language

★ Excel needs to run the 

payload

★ Uses auto_open command 

to automatically run the 

macro



How it Works - Step 3: Set Up Listening Machine

★ Uses Metasploit’s 

MSFConsole

★ Tells attacking machine:

○ IP address 

○ Listening Port

○ Payload

★ If connection is made, 

the machine has root 

access



How it Works - Step 4: Phishing the Target

★ Target must acquire 

Excel sheet

★ Methods:

○ Email

○ Web 

Download

★ Once opened, the 

attack launches



Our Process - The Payload

★ Payload
○ MSFVenom’s Reverse 

TCP Python payload

○ Python file

★ Embedding the Macro
○ Not first approach

○ Write to file

○ Execute

★ Running the payload



Demo

https://docs.google.com/file/d/1VSKkHY0A1DDr65CiWVAFCfZsA1BUrFfv/preview


Roadblocks:

★ Running the File Directly from Sheet
○ Debugging in VBA

★ Where to write file to machine

★ Obfuscating malicious code

○ Encoding

○ Replacing 

○ Spitting



Defenses

★ Turning off Macros
○ Microsoft shutting down macros for windows 10 and later

★ Anti Virus software
○ Different techniques

○ Obfuscation makes this hard



Conclusion

★ Able to start remote shell on target computer 
○ Works on any computer with python and excel

★ What we took away from this:
○ Replicating attacks is hard 

○ Do not open emails with attached documents unless you are 100% sure it is from known contact

★ Applications
○ Presented to our jobs
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